Energy-Aware Scheduling for Serverless Scientific Workflows: A Machine Learning Approach

Meeting with Prof. Viktor Prasanna

Lucas de Sousa Rosa

roses.lucas@usp.br

Alfredo Goldman gold@ime.usp.br

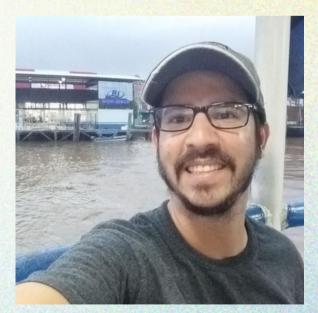
My PhD Network

This is me PhD student

Alfredo Goldman My Advisor

Danilo Santos UGA

Pedro Bruel HP Labs



Raphael Camargo S UFABC

Anderson Andrei HP Labs

Marcos Amarís SUFPA

Fontie National Laboratory

1.1 EFlop/s - 23 MW U.S DEPARTMENT OF Rank 1

NATIONAL LI BORATORY

U.S. DEPART IENT OF

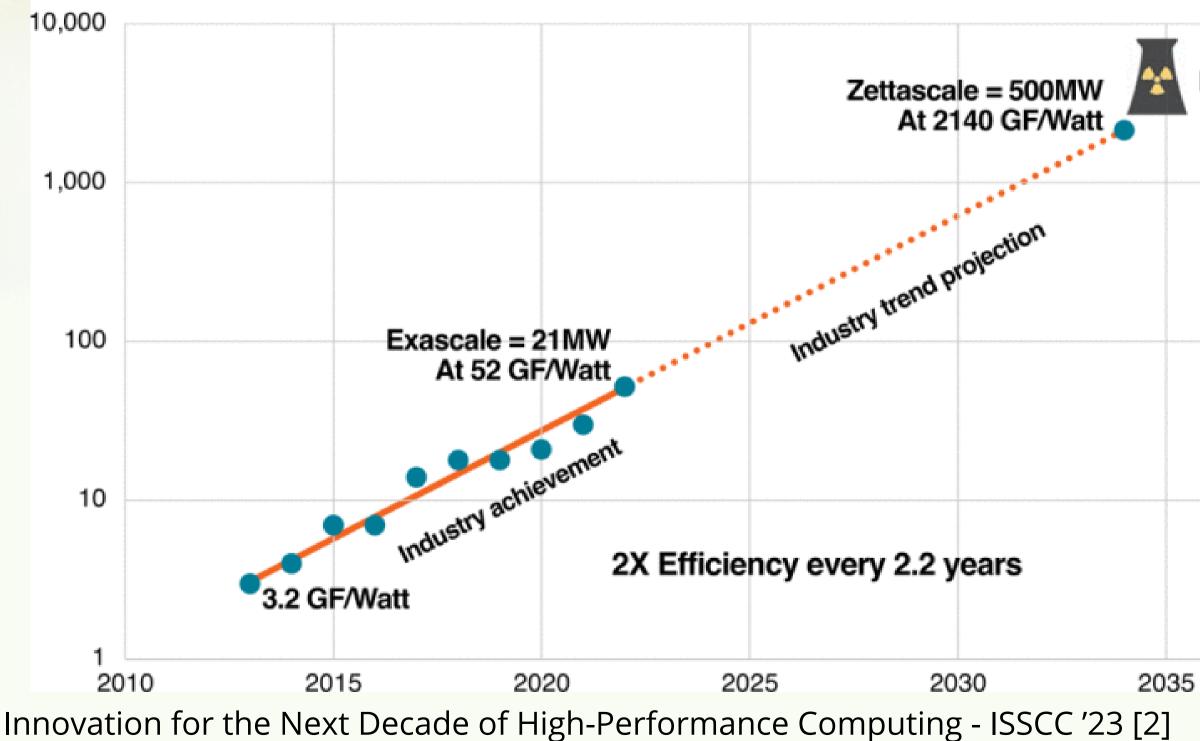
a Hewlett Packard

ENEILGY

0.6 EFlop/s - 24 MW Rank 2

Aurora

Fugaku 0.4 EFlop/s - 30 MW Rank 4



TOP500 [8] - Nov. 2023

3

Motivation

Green500 Supercomputer GFLOPs/Watt

Nuclear Power Plant ≈1GW

Lisa Su CEO of AMD

Main Objective

Specialized, power-efficient hardware [2,7]

Low-power devices and components

Hardware Level

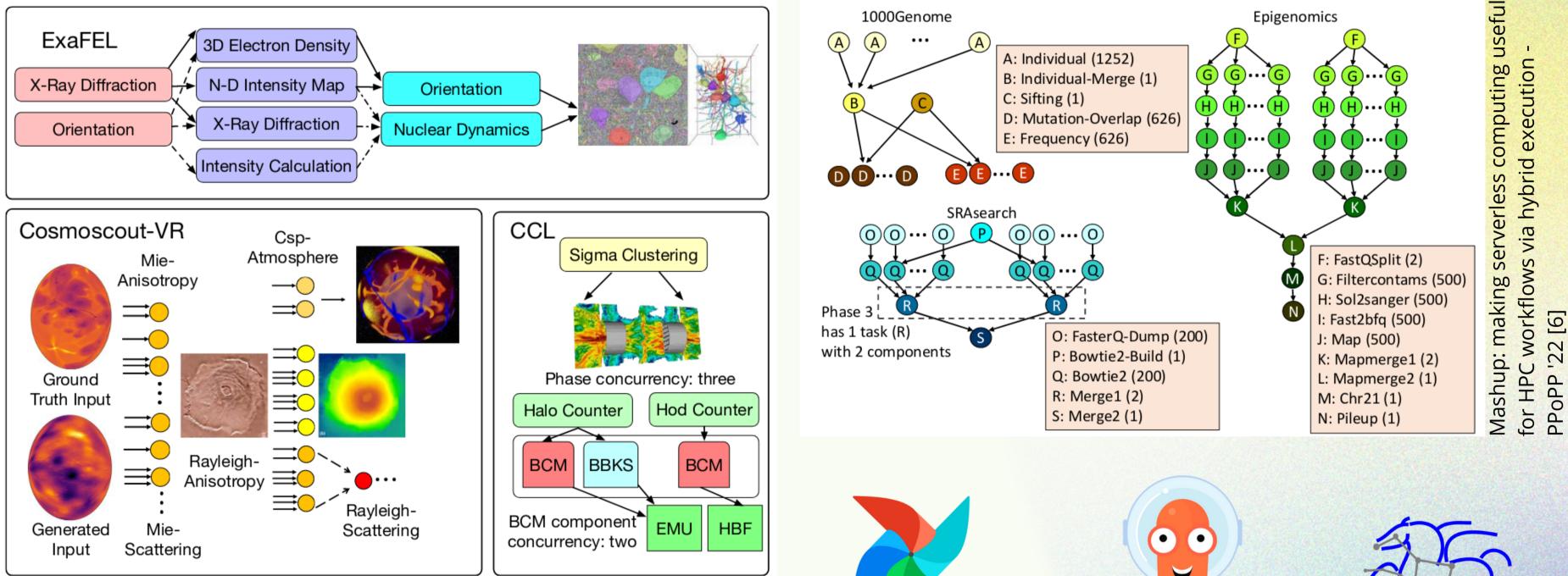
Objective

Match increasing computing

demands with reduced power

consumption

Software Level


Enhance resources management and system scheduling [7]

Improving energy-awareness of workflow

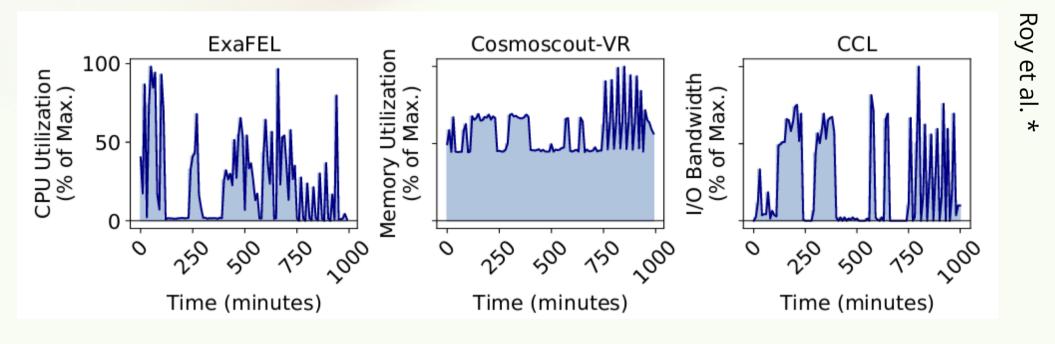
management systems (WMSs)

Efficient cooling technologies [7] Air/liquid cooling or mixed cooling

Scientific Workflows

DayDream: Executing Dynamic Scientific Workflows on Serverless Platforms with Hot Starts - SC '22 [5]

Apache Airflow



A New Trend

Traditional deployment

Monolithic applications running on on-premises clusters and IaaS

Resources under-utilization, over-provisioning, and high expenses [3-5]

*DayDream: Executing Dynamic Scientific Workflows on Serverless Platforms with Hot Starts - SC '22 [5]

Emerging trend Serverless computing can alleviate these challenges

Data locality, cold start, and resource volatility [3-5]

Workflows Scheduling

The scheduling problem

 Distributing computational resources among different tasks accodring to specific constraints

 Balancing energy efficiency with other objectives presents a challenge [4]

Solving the scheduling problem

- Workflows scheduling in HPC belongs to the NP-hard problem class
- Usually, we see in the literature heuristics with manually-tuned parameters

In recent years, the application of ML has significantly increased in task scheduling [1]

Minimize energy consumption Minimize workflow makespan Maximize resources utilization

> rd problem class nually-tuned parameters

Machine Learning and Scheduling

Advantages of ML

- ML techniques can handle complex scenarios with multiple states of the computing environment (high heterogeneity)
- Have the ability to self-adapt and self-learn

Some studies applied RL and DRL for task scheduling [1,9], while others utilized regression methods to create new policies [1]

Only a small number of recent research papers [9] have implemented such techniques in the context of serverless computing

Bringing Everything Together

Energy-aware scheduling

Introduce energy-saving innovations at the software level, focusing on scheduling

Serverless scientific workflows

Make serverless more attractive for scientific workflows

Machine Learning techniques

Develop models to address multiple complex challenges

Thank you!

Questions?!

Lucas de Sousa Rosa roses.lucas@usp.br Alfredo Goldman gold@ime.usp.br

References

- [1] G. P. Koslovski, K. Pereira, and P. R. Albuquerque, "DAG-based workflows scheduling using Actor–Critic Deep Reinforcement Learning," Future Generation Computer Systems, vol. 150, pp. 354–363, Jan. 2024, doi: 10.1016/j.future.2023.09.018.
- [2] L. Su and S. Naffziger, "1.1 Innovation For the Next Decade of Compute Efficiency," in 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA: IEEE, Feb. 2023, pp. 8–12. doi: 10.1109/ISSCC42615.2023.10067810. [3] A. Elshamy, A. Alquraan, and S. Al-Kiswany, "A Study of Orchestration Approaches for Scientific Workflows in Serverless Computing," in Proceedings of the 1st Workshop on SErverless Systems, Applications and MEthodologies, Rome Italy: ACM, May 2023, pp. 34–40. doi: 10.1145/3592533.3592809.

References

[4] L. Versluis and A. Iosup, "TaskFlow: An Energy- and Makespan-Aware Task Placement Policy for Workflow Scheduling through Delay Management," in Companion of the 2022 ACM/SPEC International Conference on Performance Engineering, Bejing China: ACM, Jul. 2022, pp. 81–88. doi: 10.1145/3491204.3527466. [5] R. B. Roy, T. Patel, and D. Tiwari, "DayDream: Executing Dynamic Scientific Workflows on Serverless Platforms with Hot Starts," in SC22: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA: IEEE, Nov. 2022, pp. 1–18. doi: 10.1109/SC41404.2022.00027. [6] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, "Mashup: making serverless computing useful for HPC workflows via hybrid execution," in Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seoul Republic of Korea: ACM, Apr. 2022, pp. 46–60. doi: 10.1145/3503221.3508407.

References

[7] X. Liao et al., "Moving from exascale to zettascale computing: challenges and techniques," Frontiers Inf Technol Electronic Eng, vol. 19, no. 10, pp. 1236–1244, Oct. 2018, doi: 10.1631/FITEE.1800494.
[8] "TOP500." Accessed: Mar. 05, 2024. [Online]. Available: https://www.top500.org/

[9] A. Mampage, S. Karunasekera, and R. Buyya, "Deep reinforcement learning for application scheduling in resource-constrained, multi-tenant serverless computing environments," Future Generation Computer Systems, vol. 143, pp. 277–292, Jun. 2023, doi: 10.1016/j.future.2023.02.006.